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Geometrical characterization of hard-sphere systems
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By using molecular dynamics simulations on a large number of hard spheres and the Voronoı¨ tessellation we
characterize hard-sphere systems geometrically at any packing fractionh along the different branches of the
phase diagram. Crystallization of disordered packings occurs only for a small range of packing fraction. For the
other packing fractions the system behaves as either a fluid~stable or metastable! or a glass. We have studied
the evolution of the statistics of the Voronoı¨ tessellation during crystallization and characterized the apparition
of order by an order parameter (Q6) built from spherical harmonics.@S1063-651X~99!19510-2#

PACS number~s!: 05.70.Fh, 05.20.2y, 61.20.2p
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I. INTRODUCTION

Packings of hard spheres are convenient models to s
many physical systems such as granular materials@1–4#,
simple liquids@5–8#, colloidal suspensions@9,10#, etc. The
main advantage of this model is the simplicity of its inte
particle potentialF, which is defined by

F5` if r<2R
F50 if r .2R, ~1!

wherer is the distance between two centers of sphere anR
the radius of the spheres. It is admitted that the pack
fraction h of such packings~defined as the ratio of the vol
ume occupied by the spheres to the total volume! cannot
exceedp/3&'0.74, corresponding to compact ordered co
figurations @hexagonal close-packed~HCP! and face-
centered cubic~FCC!#. One of the most striking properties o
a hard-sphere system is the existence of a first order fl
to-solid transition when the packing fraction increases@11–
14#. It is possible to have disordered systems at packing f
tions higher than the packing fraction of freezing, but th
are metastable. The maximum packing fraction~the so-called
random close packing, RCP! that such packings can reach
approximatelyhRCP.0.64. This value is not an exact valu
as for compact ordered packings but an empirical one
varies slightly according to the authors@5,8,15#.

In this paper, by using the Voronoı¨ tessellation, we char
acterize geometrically hard-sphere systems obtained by
merical simulations along the different branches of the ph
diagram and we study the crystallization of disordered pa
ings. In Sec. II, we introduce the algorithms used to build
initial systems and our hard-sphere molecular dynamic a
rithm. In Sec. III, we present the tools used to characte
the packing, i.e., the Voronoı¨ tessellation and the bond orde
parameter. In Sec. IV, we report the phase diagram.
geometric properties of the packings along the differ
branches are described in Sec. V. In Sec. VI, we study
possible crystallization of disordered metastable packings
effect on the geometric parameters during the crystalliza
and compare the informations given by the Voronoı¨ tessella-
tion and by the order parameter. Finally, in Sec. VII, w
present our conclusions.
PRE 601063-651X/99/60~4!/4551~8!/$15.00
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II. NUMERICAL PACKINGS

In this section, we first present the different methods u
to build the initial packings of spheres, and then we descr
the molecular dynamics algorithm used to equilibrate a
eventually crystallize them. We start from nonequilibrat
packings, ordered or disordered. To obtain an ordered p
ing, we simply decrease the radius of the spheres of a F
packing to have the wanted packing fraction. A disorde
packing is obtained using the Jodrey and Tory’s algorit
@16#. It is based on an iterative sequential resorption of ov
laps. The input parameters allow to control the final diame
of the sphere. As a consequence, we can build Jodrey-To
packing in a large range of packing fraction~from h'0.4 to
h'0.64).

All the packings are made of approximately 15 0
spheres. Some larger packings with approximately 30
spheres were built to refine some peculiar data. Once
packing has been built, ordered or disordered, it is equ
brated and eventually crystallized using a molecular dyna
ics ~event-driven! algorithm. We give a random initial veloc
ity to each sphere, in such a way that the total momentum
equal to 0. The spheres move independently unless an e
takes place. An event is an instantaneous elastic collis
between two particles. It is characterized by a sudden cha
of particle momentum. Since the collisions are instantaneo
there are only binary collisions in the system. Our algorith
uses periodic boundary conditions. A general description
molecular dynamics of hard-sphere systems can be foun
@17#.

III. CHARACTERIZATION OF THE PACKINGS

A. Thermodynamical properties

The thermodynamical properties of elastic hard-sph
systems depend on the temperature in a trivial manner. S
the collisions are instantaneous, changing the tempera
just rescales the time in the system.

Two methods can be used to calculate the pressure in
packing. The first one consists of calculating the collisi
rateG from which we can deduce the pressure by the form
4551 © 1999 The American Physical Society
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PV

NkT
511

G

G0
, ~2!

whereP is the pressure,V the total volume,N the number of
spheres,T the temperature,k the Boltzmann’s constant, an
G058Ap^v2&/3R2N(N21)/V @18# is the low-density colli-
sion rate for large packings of hard spheres. In the expres
of G0 , ^v2& is the mean square velocity. The second meth
is based on the fact that the equation of state of hard sph
is related to the radial distribution functiong(r ) at contact
r 52R, whereR is the radius of the spheres,

PV

NkT
5114hg~2R!. ~3!

The two methods give close values, but the second one
quires some care:g(2R) is difficult to measure with preci-
sion since the radial distribution function can rise or f
rapidly close tor 52R. So we determine the pressure fro
the collision rate@Eq. ~2!#.

B. Geometric characterization of the packing

Our analysis of the geometry is based on a classic too
the statistical geometry: the Voronoı¨ tessellation of the pack
ing @19#. This method is very powerful for studying correla
tions in packings of spheres@20,21#, the structure of glasse
@22,23#, of Frank-Kasper phases@24#, or of simple liquids
and amorphous solids@25,26#. It can been generalized t
polydisperse assemblies of spheres by using the Lagu
distance between spheres@27# or by using the Voronoı¨ S-net
@28#. One of its more recent and original uses is the study
the growth of cellular materials@29#. It has been already use
by Tanemuraet al. @30# in a geometrical analysis of crysta
lization. A Voronoı̈polyhedron of a sphere@31# contains all
points in space that are closer to the sphere center than
other particles. It is delimited by the smallest envelope
bisecting planes with the other spheres. The Voronoı¨ tessel-
lation is the whole collection of the Voronoı¨ polyhedra. It
creates a froth which may be considered without any re
ence to the underlying spheres@20#. It allows us to define the
notion of ‘‘neighbor’’ without ambiguity for any packing
fraction: two spheres are neighbor if their Voronoı¨ polyhedra
share one face.

The basic quantities we study in this paper are:
~i! the mean number̂f & of faces of the Voronoı¨ polyhe-

dra,
~ii ! the variancem2 of f : m25^ f 2&2^ f &2,
~iii ! the fractionpi of faces that have i edges,
~iv! the slope of the Aboav-Weaire’s law, which describ

the topological correlation between neighbors. Let bem( f ),
the average number of faces of the neighbors of af -faceted
cell. We have

m~ f !5^ f &2a1
^ f &a1m2

f
, ~4!

wherea is a parameter~of order of 1!, which depends on the
nature of the foam.
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C. The measure of the order

The classical way for determining order in an isotrop
packing of spheres is by inspection of its radial distributi
function. As the crystallization begins to occur, a very sm
peak appears for a value ofr which corresponds to the sec
ond neighbors in a FCC or HCP arrangement,r 52&R. As
pointed out by Rintoul and Torquato@32#, this method is
unsatisfying for two reasons: on one hand the absence o
peak does not necessarily mean the absence of crysta
tion, and on the other hand it is very difficult to determin
when the peak appears.

Steinhardtet al. @33# have proposed another way to dete
mine more quantitatively order in a packing. The meth
consists of assigning the quantity

Qlm5Ylm„u~rW !,f~rW !… ~5!

to every ‘‘bond’’ joining a sphere to its neighbors, whe
Ylm„u(rW),f(rW)… are spherical harmonics, each bond bei
identified by its midpointrW and its polar anglesu(rW) and
f(rW) measured in respect to some arbitrary reference c
dinate system. TheQlm depend on the reference coordina
system, so one must consider rotationally invariant combi
tions, such as

Ql5S 4p

2l 11 (
m52 l

l

u^Qlm&u2D 1/2

, ~6!

where^Qlm& is the average ofQlm over all bonds.
Since the lowest nonzeroQl in common with the icosa-

hedral symmetry and cubic symmetry corresponds tol 56
@33#, Q6 can be taken as an order parameter.Q6 is very
sensitive to any kind of crystallization and increases sign
cantly when order appears. It is important to notice here t
sinceQ6 is calculated on the Voronoı¨ neighbors, its value for
a compact structure is lower than that calculated with o
the nearest neighbors. For example, in the slightly disorde
FCC case@34#, there are 12 nearest neighbors placed atR
and on average 14 Voronoı¨ neighbors~the 12 nearest and, o
average, 2 placed at 2&R). The value ofQ6 calculated on
the nearest neighbors is 0.5745, whereas it is on ave
0.454 on the Voronoı¨ neighbors.

Another way to measure the local order of a packing
spheres is by way of the fractionspi of i -edged faces of the
tessellation@30,21,20#. Crystallized structures with a high
degree of icosahedral order, such as the A15 structure~b-
tungsten!, have a high value ofp5 which decreases sharpl
when the melting occurs@24#, while in structure where cubic
symmetry dominates,p6 and p4 are high and abruptly de
crease at melting. Then the study of thepi ’s allows us to get
an idea of the symmetry of a packing and to localize
structural phase transition.

IV. PHASE DIAGRAM

We have reported in Fig. 1 the phase diagram in
pressure-packing fraction plane. It is made of four branch
the fluid branch, the coexistence branch, the stable s
branch, and the metastable branch. The fluid branch star
h50 with the valuePV/NkT51 which corresponds to an
ideal monoatomic gas. We obtain it by performing molecu
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PRE 60 4553GEOMETRICAL CHARACTERIZATION OF HARD-SPHERE . . .
simulations on FCC and Jodrey-Tory’s packings of lo
packing fraction until the pressure reaches a constant va
As the packing fraction increases, the number of collisio
per unit of time becomes more and more important and
pressure increases until the freezing point, which co
sponds to a packing fractionh f'0.495. At this point the first
order transition can occur and the branch splits into t
parts: the coexistence branch and the metastable branc
very good approximate expression for the fluid branch
been given by Carnahan and Starling@35#. The difference
between this expression and our numerical data is less
1%.

In the coexistence branch the fluid and the solid coexis
equilibrium at a given pressure until the melting point at t
packing fractionhm'0.545. We do not observe a consta
pressure but a ‘‘Van der Waals loop’’ consequence of
finite size of the system. This branch is obtained by perfo
ing molecular dynamics on FCC initial packings until th
pressure reaches a constant value. The solid branch, obt
with FCC initial packings, is the stable branch of the syst
for packing fractions higher than the packing fraction
melting. The pressure goes to infinity when the packing fr
tion reaches the FCC value 0.7405. Our results are very c
to those of Alderet al. @36#. A very good theoretical expres
sion for this branch is given by Hall@37#. A small part of this
branch can also be obtained by crystallization of a Jodr
Tory’s packing~see Sec. VI!.

The last branch corresponds to the metastable state o
system for packing fraction higher than the packing fract
of freezing. The corresponding packings, obtained by equ
bration of Jodrey-Tory’s packings, are disordered and
pressure diverges when the packing fraction reaches the
value ('0.64). The main difficulty in determining the pre
sure in this branch is to run the simulation long enough
equilibrate the packing without crystallizing it. For packin
fractions between about 0.54 and 0.59, equilibration a
crystallization are not well separated@38,32#: as seen in Fig.
2~a! we observe a short, slightly decreasing, plateau and
a faster decrease of the pressure, consequence of the cr

FIG. 1. Evolution ofPV/NkT for thermodynamically stable~s!
and metastable~d! packings. Solid line, Carnahan and Starlin
@35#; dotted line; Speedy@38#; dashed line; Hall@37#.
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lization; we take for the pressure the value of the small p
teau. At higher packing fractions@Fig. 2~b!#, the crystalliza-
tion becomes more difficult; the pressure decreases
quickly because the initial packing is far from equilibrium
then it reaches a plateau value which we take as the pres
at the corresponding packing fraction for the metasta
branch because there is no evident sign of crystalliza
~this will be confirmed by the measurement ofQ6 ; see the
next section!.

Speedy@38# proposed an empirical equation of state f
the metastable branch aboveh50.56 that fits very well our
data. Another fit equation was given by Torquato@39#.

V. GEOMETRICAL CHARACTERIZATION

In this section, we study the order parameterQ6 and
the topological parameterŝ f &, m2, and pi along the
different branches of the phase diagram@Figs. 3, 4~a!, 4~b!,
and 5#. For thepi , we limit ourselves to the values obtaine
for i 54, 5, and 6.

First, we note some common points in the evolution of
those quantities with the packing fraction. On the disorde

FIG. 2. PV/NkT as a function of the number of collisions for a
initial Jodrey-Tory’s packing of packing fractionh50.558~a! and
of packing fractionh50.628~b!.
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branches, the variations are regular and we do not obser
notable modification of behavior when passing from the l
uid branch to the metastable one. On the contrary, all
quantities show a sharp variation between the freezing p
and the melting point~in fact this variation begins after th
freezing point and stops before the melting point; this is d
to the finite size of our system!. Above the melting point, the
variation is much slower.

We also note some significant features:

1. Q6 gives really a measure of order in the packing.
the disordered branches, it is a very low sign of an abse
of crystallization. It increases sharply in the coexisten
branch, and continues to increase more slowly above m
ing, sign of a progressive structuration of the packing.

2. The average number of faces^ f & decreases with the
packing fraction starting from the exact valuêf &
548p2/3512.15.535 for h50, obtained by Meijering
@40#. For the crystallized packings, it is close to 14, the th
oretical value for slightly disordered HCP or FCC packin
@34#. For the random close packing,^ f & is close to 14.2. The
evolution of m2 is similar to that of^ f &; for the crystalline
packings,m2 is almost constant (.0.9).

3. In the liquid and metastable branches,p5 is continu-
ously increasing withh; it is always larger thanp4 andp6 ,
sign of an important disorder in the packing. On the contra
in the crystalline branch,p6 is larger thanp5 .

4. According to the Aboav-Weaire’s law, the variations
the quantityf m( f ) with f can be fitted, with a good approx
mation, by a straight line for each packing fractionh. How-
ever, the slopek5^ f &–a of those lines depends onh, as
already noted by Ogeret al. @20#. From the variations of the
topological quantities, we expect the Aboav-Weaire’s law
be affected also by the degree of order in the packing. Th
indeed the case as shown in Fig. 6. The variations of
slopek are similar to those of the other quantities we ha
studied.

From above, it can be deduced that all the quantities
have considered can be used to characterize order in a p

FIG. 3. The ‘‘Q6-phase diagram.’’~s!, stable packings;~d!,
metastable packings;~n!, theoretical value for the slightly disor
dered FCC.
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ing of spheres. However, as can be seen in Figs. 3 to 6,
order parameterQ6 , which has very weak values in the dis
ordered phases and much larger values in the crysta
phase, seems to be particularly suitable. This will be c
firmed in the next section, where we consider the transit
from the metastable branch to the crystalline branch.

VI. TRANSITION FROM THE METASTABLE BRANCH
TO THE STABLE BRANCH

In this section we study the evolution of the geometric
quantities when a Jodrey-Tory packing with packing fracti
betweenh.0.545 andh.0.6 @Fig. 7~a!# crystallizes@Fig.
7~b!#.

A. Crystallization of the Jodrey-Tory’s packings

The effects of the molecular dynamics algorithm on t
Jodrey-Tory’s packings depend strongly on the packing fr

FIG. 4. ^ f & ~a! andm2 ~b! vs the packing fraction for the stabl
branches~s! and for the metastable branch~d!. In ~a! the error
bars are given for the points corresponding to packing for whic
is difficult to distinguish between equilibration and crystallizatio
For the other points, the errors are of the order of magnitude of
symbols. For~b! all the errors are smaller than the magnitude of t
symbols.
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PRE 60 4555GEOMETRICAL CHARACTERIZATION OF HARD-SPHERE . . .
tion h. If one starts with a packing withh betweenh f
50.495 andhm50.545 we do not observe crystallizatio
even after an important number of collisions (109 collisions!;
the system is a metastable fluid~the same behavior has bee
observed by Speedy@41#!. Betweenhm and hRCP, an in-
crease of packing fraction is synonymous of an increase
the difference of entropy between the ordered and the di
dered state. So, one may think that the higher the pac
fraction, the higher the propensity to crystallize. But, th
propensity depends also on the free volume of the sphe
Indeed, if the spheres are very close to each other~i.e., at
high packing fraction! their moves are very small and th
structural reorganization very slow. The system is in
‘‘quenched’’ state. This means that the competition betwe
entropy and free volume governs the crystallization.

We have reported in Fig. 8 the evolution ofQ6 versus the
packing fraction for initial Jodrey-Tory’s packings after
given number of collisions (109) and in Fig. 9 the corre-
sponding values ofpi . For comparison we have also re

FIG. 5. Fractionpi of faces havingi edges vs the packing frac
tion p4 ~h!, p5 ~L!, p6 ~s!. Open symbols: stable branches; clos
symbols: metastable branch.

FIG. 6. Slope off m( f ) vs the packing fraction for the stabl
branches~s! and for the metastable branch~d!.
of
r-
g

s.

a
n

ported the values ofQ6 for the stable branch and the value
of pi for the disordered packings. These figures clearly sh
that crystallization occurs only in a limited range of packi
fractions. Moreover, in that range, theQ6 values show that
crystallization is not fully achieved after 109 collisions, al-
though the pressure values~not shown! and thepi values
~compare Figs. 5 and 9! are close to their values in the crys
talline branch. Here still, parameterQ6 is a better measure o
order than the other quantities. The propensity to crystal
is maximum for a packing fraction close toh.0.58. It is
interesting to notice that it is very close to the value of t
liquid-glass transition packing fraction determined nume
cally @42–44#. Furthermore, Fig. 8 shows that the structu
of a crystallized hard sphere system is FCC.

As said above, at high packing fraction, the spheres c
not move easily and the crystallization cannot occur in r

FIG. 7. Crystallization of an initially disordered packing o
spheres with a packing fractionh'0.558. ~a! part of the initial
packing,~b! part of the packing after 109 collisions.
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sonable times. Figure 2~b! illustrates our purpose forh
50.628: the pressure reaches rapidly a plateau then
creases very slowly with time. After a very long time it cou
reach the value for the stable packing at the same pac
fraction. The question of the existence of a glassy state f
packing of hard spheres is controversial@38,32,45,43#. Using
the parameterQ6 , Rintoul and Torquato@32# found that,
even at packing fraction as high as that of the RCP, sm
amounts of crystallization occur and the corresponding s
tem is not in a glassy state.

We do not find clear sign of crystallization on packin
corresponding to our ‘‘glassy’’ systems. We are then
agreement with a lot of previous authors@42,38,41,43#. In-
deed, the values ofQ6 for these packings during all the dy
namics do not vary significantly. Furthermore the exami
tion of Figs. 8, 9, and 2~a! shows clearly the existence of
system which has the local structure of a liquid and wh
reorganizes itself very slowly with time. So our numeric

FIG. 8. Values ofQ6 for stable packings~s! and for initially
metastable packings~d! after 109 collisions.

FIG. 9. Values ofp4 ~h!, p5 ~L!, and p6 ~s! for disordered
packings~open symbols! and for initially metastable packings afte
109 collisions ~closed symbol!.
e-

ng
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simulations seem to show the existence at high packing f
tions of a metastable glassy state.

B. Evolution of the geometry of the packing with packings
belonging initially to the metastable branch

We have studied the evolution of all the geometric
quantities defined previously, with the number of collisio
for Jodrey-Tory’s packings with packing fraction allowin
partial crystallization. We have reported in Fig. 10 the ev
lution of Q6 with the number of collisions for 4 values of th
packing fraction. We observe thatQ6 increases with the
number of collisions, sign of a crystallization. At som
times, the evolution ofQ6 can be very sharp correspondin
to strong and global reorganizations.

We have reported in Fig. 11 the evolution o
^ f & with the number of collisions for a packing withh
50.558. After a sharp initial variation,^ f & decreases slowly
with the number of collisions from 14.38 to 14.08, which

FIG. 10. Evolution ofQ6 with the number of collisions for
initial Jodrey-Tory’s packings.h50.548 ~s!, h50.558 ~L!, h
50.576~2!, andh50.585~n!.

FIG. 11. ^ f & vs the number of collisions for the crystallization o
a Jodrey-Tory’s packing with a packing fraction of 0.558.
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very close to the corresponding value of the crystall
branch. The evolution ofm2 is very similar: it decrease
from 1.27 to 0.93.

The evolution ofp4 , p5 , and p6 with the number of
collisions is represented in Fig. 12 forh50.558. We observe
a short variation and then a steady state. At50 we have a
large number of five-edged faces ('43%), whereas the
number of four and six-edged faces are lower~respectively
'18% and 28%!. When crystallization occurs the number
disclinations increases, and the number of pentagonal f
decreases.

The topological parameters~and also the pressure, whic
is not shown! reach rapidly steady values, close to their v
ues in the crystalline branch. In the same time,Q6 continues
to increase~Fig. 10!. One more time, we are led to the co
clusion thatQ6 is a more precise measure of the configu
tion of the spheres. To illustrate this purpose, we have
ported in Fig. 13 the evolution ofQ6 with p6 during the
relaxation of Jodrey-Tory packings at different packing fra

FIG. 12. Fraction of faces haveni edges versus the number o
collisions for a packing fraction of 0.558p4 ~h!, p5 ~L!, andp6

~s!.

FIG. 13. p6 vs Q6 at different times during the Event-Drive
simulation.h50.576~h!, h50.548~d!.
e

es

-

-
-

-

tions. We see thatp6 is rapidly close to its final value
whereas at this moment the value ofQ6 is almost four times
lower than its final value.

As is shown in Fig. 14, the slope of the Aboav-Weaire
law, k, decreases slightly with the number of collisions.
fact the difference between the values ofk for disordered and
for ordered packings is weak~Fig. 15!. So, the modification
of the Aboav-Weaire’s law during crystallization is ver
weak.

VII. CONCLUSION

We have studied the phase diagram of hard-sphere
tems not only from a thermodynamical point of view, b
also from a geometrical point of view. This was done
combining the Voronoı¨ tessellation and classical hard-sphe
molecular simulations. The different topological properti
for the four branches of the hard-sphere phase diagram
presented in detail. We have shown that many of these p
erties are characteristic of the ‘‘state’’ of the packing.

FIG. 14. Slopek of f m( f ) vs the number of collisions for an
initial Jodrey-Tory’s packing with a packing fraction of 0.558.

FIG. 15. f m( f ) for a packing of 16384 spheres of packin
fractionh'0.558.~d! after 109 collisions,~s! after 107 collisions.
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4558 PRE 60RICHARD, OGER, TROADEC, AND GERVOIS
particular, the average coordination number is lower for
crystallized branch than for metastable disordered bra
and the fraction of five-edged faces is higher for the me
stable branch than for the crystallized branch. We have
considered the evolution of the Voronoı¨ parameters during
the crystallization. They are good tools to investigate
order to disorder phase transition. But a more precise m
sure of order is given by the order parameterQ6 . The study
of the evolution of theQ6 with time shows that crystalliza
s

ro

nd

g

.

e
h
-

so

e
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tion is only possible for a given range of packing fractio
Below this range we obtain a metastable fluid and above
range we obtain a glassy state.
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